Folienauszüge aus:

TRIZ

Theorie des erfinderischen Problemlösen

TMS

Steinbeis-Transferzentrum Managementsysteme Industriepark West, Söflinger Strasse 100, 89077 Ulm Tel.: 0731-933-1180, Fax: 0731-933-1189

Mail: info@tms-ulm.de, Internet: www.tms-ulm.de

Altschuller's Innovationsebenen

Level 5: seltene Entdeckung, Pionier-Erfindung

Level 4: neue Generation, neue Prinzipien, aber bekannte Funktion

Level 3: wesentliche Verbesserung eines existierenden Prinzips

Level 2: kleine Verbesserung eines existierenden Prinzips

Level 1: offensichtliche Lösung

TRIZ bietet Hilfestellung, um auf <u>Level 2,3,4</u> zu erfinden!

Level	Niveau	Anteil	Quelle	Versuche
5	Entdeckung: Grundlegende Erfindung basierend auf einem neuen wissenschaftlichen Phänomen	ca. 1 %	gesamtes verfügbares Wissen	1.000.000
4	Erfindung ausserhalb einer Technologie: Neue Generation eines Designs oder neue konstruktive Lösung basierend auf neuer wissenschaftlicher Erkenntnis	ca. 4 %	Industrie extern	100.000
3	Substantielle Erfindung innerhalb einer Technologie: Grundlegende Verbesserung eines existierenden Systems	ca. 18 %	Industrie intern	1.000
2	Geringfügige Erfindung innerhalb der existenten Konstruktion: Verbesserung eines existenten Systems, in der Regel mit Kompromissen	ca. 45 %	Unternehmen	100
1	Offensichtliche, konventionelle Lösung: Problemlösung mittels im betreffenden Fachgebiet bekannter Methoden	ca. 32 %	eigene Person	10

gemäss Patentrecherchen, Altschuller 1964-1974

TRIZ.PPT

• schnelle und gezielte Lösungssuche

- Auflösung von Denkblockaden
- technisch wissenschaftliche Probleme sollen mit Hilfe innovativer Grundprinzipien und ohne Kompromisse gelöst werden
- wissenschaftliche Effekte zur Innovation und für das Design der nächsten Produktgeneration nutzen
- Technologie Weiterentwicklungen "vorhersagen"

Hauptmerkmal der Problemlösung mit TRIZ ist das Identifizieren, Verstärken und Eliminieren technischer und physikalischer Widersprüche in technischen Systemen, statt der Suche nach Kompromissen, der scheinbar "Goldenen Mitte".

TRIZ

Vision

Entwicklungstrends ermitteln,
Standortbestimmung

Entwicklung von Visionen für neue Produkte

Systematik

Verfahren der Problemanalyse und Überwindung von Denkblokaden

Finden neuer Ansätze

Analogien

Abstrahierung von Konflikten und Widersprüchen

Nutzung fester Lösungsansätze

Wissen

Wissen aus allen möglichen Bereichen einfach recherchierbar gemacht

TRIZ

Vision

S - Kurve

Gesetze der techn. Evolution

Systematik

Innovationscheckliste

Problemformulierung

Ressourcen

Ideales System

Antizipierende Fehlererkennung

Zwergemodell

Trimming

Operator Material/Zeit/Kosten

Analogien

Technische Parameter

Innovative Grundprinzipien

technischer und physikalischer Widerspruch

Widerspruchsmatrix

Separationsprinzipien

Stoff-Feld-Analyse


76 Standardlösungen

Wissen

Effekte-Lexikon

TRIZ.PPT

"funktionsorientiert"

Stoffliche (Substanz-) Ressourcen:

- Abfall
- Rohmaterialien
- Systembestandteile
- preiswerter Stoff
- Substanzfluss
- Substanzeigenschaften

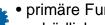
- Energie im System
- Energie aus der Umgebung
- auf mögliche Energiequellen aufbauen
- Abfall des Systems wird zur Energiequelle des Systems

Zeitliche Ressourcen:

- im Voraus arbeiten
- parallel arbeiten
- Nacharbeiten

Räumliche Ressourcen:

- Leeraum
- andere Dimension
- vertikale Anordnung
- Verschachtelung



Informationsressourcen:

- Information durch Substanz selbst überbracht
- Information ist inhärente Eigenschaft
- bewegliche Information
- temporäre, flüchtige Information
- Information über Zustandsänderung

Funktionale Ressourcen:

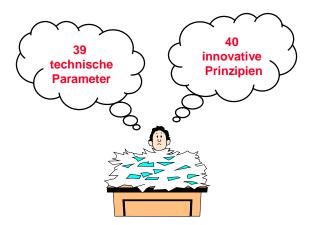
- primäre Funktion bietet selbst Ressourcen
- schädliche Effekte nutzen
- sekundäre oder Hilfsfunktionen nutzen

Ressourcen

Schritte der antizipierten Fehlererkennung

- 1. Formuliere das Original Problem
- 2. Formulierung des invertierten Problems
- 3. Verstärkung des invertierten Problems
- 4. Suche nach offensichtlichen Lösungen für das invertierte Problem
- 5. Identifizierung und Nutzung von Ressourcen
- 6. Suche nach brauchbaren Effekten
- 7. Suche nach neuen Lösungen
- 8. Rück-Invertierung und Verifikation
- 9. Entwicklung von Vorgehensweisen zur **Fehlervermeidung**

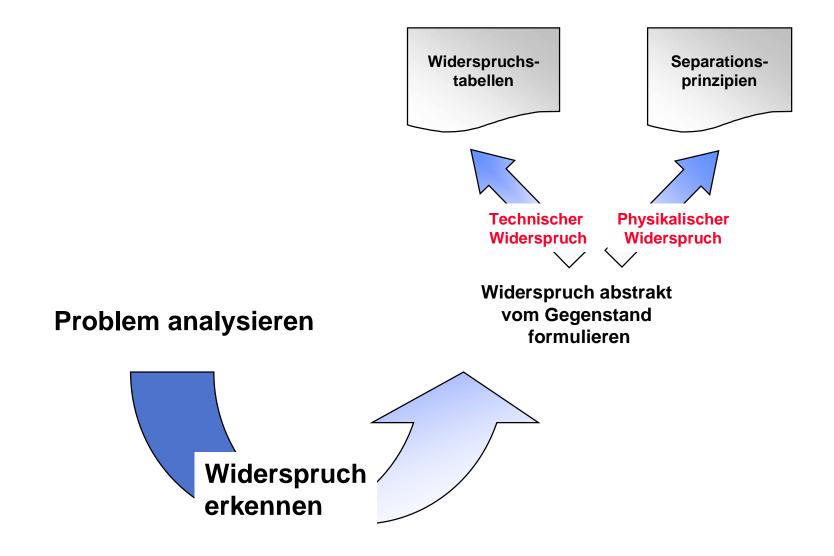
Ziel:


- ein intaktes System zum Versagen zu bringen
- der Grund des Versagens wird zur gewollten Funktion transformiert
- auf das invertierte Problem wird TRIZ angewandt

AFE ist Provokation und Innovation zugleich

Grundsätzliche Vorgehensweise:

- 1) Fokus auf schädliche und ineffiziente Aspekte des Systems
- 2) Übertreibung dieses Aspekte bis zum maximalen Fehlerergebnis
- 3) Die Katastrophe wird nun zur gewollten Funktion gemacht


- Voraussetzung für innovative Ideen und Problemlösungen ist ein Konflikt
- Altschuller klassierte aus den untersuchten Patenten alle Systemeigenschaften, die in Widersprüchen verwickelt sind, in 39 technische Parameter
- In der Regel lassen sich alle Konflikte formulieren mittels zweier dieser 39 Parameter
- Unabhängig von Branche und Schwierigkeit wurden Probleme immer wieder mit vergleichbaren Vorgehensweisen und Ideen gelöst
- Diese abstakten und verallgemeinerten Lösungsansätze wurden in die 40 grundsätzliche Innovationsprinzipen klassiert

- 1. Gewicht eines bewegten Objekts
- 2. Gewicht eines unbewegten Objekts
- 3. Länge eines bewegten Objekts
- 4. Länge eines unbewegten Objekts
- 5. Fläche eines bewegten Objekts
- 6. Fläche eines unbewegten Objekts
- 7. Volumen eines bewegten Objekts
- 8. Volumen eines unbewegten Objekts
- 9. Geschwindigkeit
- 10. Kraft
- 11. Spannung, Druck
- 12. Form
- 13. Stabilität des Objekts
- 14. Festigkeit
- 15. Haltbarkeit eines bewegten Objekts
- 16. Haltbarkeit eines unbewegten Objekts
- 17. Temperatur
- 18. Helligkeit
- 19. Energieverbrauch eines bewegten Objekts
- 20. Energieverbrauch eines unbewegtes Objekt

- 21. Leistung
- 22. Energieverschwendung
- 23. Materialverschwendung
- 24. Informationsverlust
- 25. Zeitverschwendung
- 26. Materialmenge
- 27. Zuverlässigkeit
- 28. Messgenauigkeit
- 29. Fertigungsgenauigkeit
- 30. äussere negative Einflüsse auf Objekt
- 31. schädliche Nebeneffekte des Objekts
- 32. Fertigungsfreundlichkeit
- 33. Benutzungsfreundlichkeit
- 34. Reparaturfreundlichkeit
- 35. Anpassungsfähigkeit
- 36. Komplexität in der Struktur
- 37. Komplexität in der Kontrolle / Steuerung
- 38. Automatisierungsgrad
- 39. Produktivität

nicht erwünschte Veränderung	Gewicht eines bewegten Objektes	Gewicht eines unbewegten Objektes	Länge eines bewegten Objektes	Länge eines unbewegten Objektes	Fläche eines bewegten Objektes	Fläche eines unbewegten Objektes
			15,8, 29,34		29,17,3 8,34	
				10,1, 29,35		35,30,1 3,2
	8,15, 29,34				15,17,4	
	\mathcal{X}	35, 28, 40,29				17,7, 10,40
	2,17, 29,34		14,15,1 8,1			
		30,2, 14,18		26,7, 9,39		
	nicht erwünschte Veränderung	8,15, 29,34	8,15, 29,34 35, 28, 40,29 2,17, 29,34 30,2,	8,15, 29,34 8,15, 29,34 35, 28, 40,29 2,17, 29,34 30,2,	15,8, 29,34 10,1, 29,35 8,15, 29,34 35, 28, 40,29 2,17, 29,34 30,2, 30,2, 26,7,	15.8, 29,34 8,34 10,1, 29,35 15,17,4 29,34 25, 28, 40,29 2,17, 29,34 30,2, 26,7,

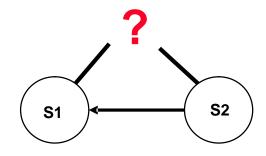
Widerspruchstabelle

Nr.	Bezeichnung	Vorgehensweise			Beispiele		
INI.	Bezeichnung	Schritt 1	Schritt 2	Schritt 3	Beispiel 1	Beispiel 2	
8	Gegengewicht	Das Gewicht des Objekts kann durch Kopplung an ein anderes, entsprechend tragfähiges Objekt kompensiert werden.	Das Gewicht des Objekts kann durch aerodynamische oder hydraulische Kräfte kompensiert werden.		Boot mit Tragflügel	Rennwagen haben einen Heckflügel, um die Bodenhaftung zu erhöhen.	
15	Dynamisierung	Gestalte ein System oder dessen Umgebung so, daß es sich automatisch unter allen Betriebszuständen auf optimale Performance einstellt.	Zerteile ein System in Elemente, die sich untereinander optimal arrangieren können.	Mache ein unbewegliches Objekt beweglich, verstellbar oder austauschbar.	Die bewegliche Verbindung zwischen Blitzlampe und Blitzgerät.	Ein Transportschiff hat eine zylindrische Rumpfform. Um den Tiefgang bei voller Beladung zu reduzieren, wird es aus zwei mit einem Gelenk verbundenen Halbzylindern gefertigt, die bei Bedaff aufgeklappt werden können.	
29	Pneumatik und Hydraulik	Ersetze feste, schwere Teile eines Systems durch gasförmige oder flüssige. Nutze Wasser oder Luft zum Aufpumpen, Luftkissen, hydrostatische Elemente.			Um den Zug in einem Industriekamin zu erhöhen, wird er innen spiralig mit einem porösen Rohr, durch das Luft geleitet wird, ausgestattet. Die aus diesen Poren strömende Luft erzeugt ein Luftkissen innen im Kamin, wodurch er besser zieht.	Zum Postversand zerbrechlicher Dinge werden Packmaterialien mit Luftpolstern (Luftblasenfolie) oder geschäumte Packungen verwendet.	
34	Beseitigung und Regenaration	Beseitige oder verwerte (ablegen, auflösen, verdampfen) diejenigen Teile des Systems, die ihre Funktion erfüllt haben oder unbrauchbar geworden sind.	Stelle verbrauchte Systemteile unmittelbar im Arbeitsgang - wieder her.		Patronenhülse wird nach dem Schuß ausgeworfen.	Booster-Raketen trennen sich nach Erfüllen ihrer Aufgabe von der Hauptrakete ab.	

Tabelle der

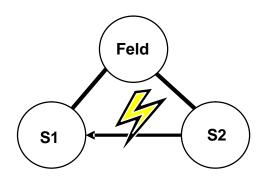
Innovativen

Grundprinzipien


Grundmodelle technischer Systeme

- Vollständige Systeme
- nicht vollständige Systeme, die komplettiert oder durch ein neues System ersetzt werden müssen
- vollständige, aber nicht genügend effiziente Systeme, die verbessert werden müssen
- vollständige, aber schädliche Systeme, bei denen der negative Effekt eliminiert werden muss

Bei Problemen mit existenten Systemen, denen eine der 3 Komponenten fehlt


Hinweise, wo das System zu komplettieren ist

Bei Problemen in vollständigen Systemen mit Innovationsbedarf

Vorschläge, wie die Systemleistung optimiert werden kann

- TRIZ ist eine Methodik zur Erzeugung von Lösungskonzepten.
- Es werden keine kompletten, ingenieursmässige Lösungen erzeugt.
- Die konkrete Lösung liegt im Rahmen der gefundenen Ideen und Konzepte.
- Die Innovations Checkliste ist die Basis der Problemformulierung.
- Die Ausformulierung von Problemen bzw. Teilproblemen ist ein relevanter Bestandteil von TRIZ.
- Für die Lösung von Widersprüchen und Lösungen sind standardisierte Werkzeug vorhanden
- Der Einsatz von QFD ermöglicht ein Verständnis für die Anforderungen des Kunden bzw. der Technologie durch Transformation in die Ingenieurssprache.

14